基于miR21的宫颈癌细胞顺铂敏感性机制研究

[摘要] 目的 探討miR21影响宫颈癌细胞株Hela及顺铂耐药细胞株Hela/DDP顺铂敏感性的分子机制。 方法 利用riboFECTTM CP转染试剂分别将成熟miR21 mimic及其阴性对照试剂NC转染至Hela细胞,miR21 inhibitor及其阴性对照试剂NC转染至Hela/DDP细胞,并将细胞分为mimic组、inhibitor组、相应NC组及Blank组。Real-time PCR检测PTEN mRNA的表达水平;流式细胞仪检测细胞周期(PI法)及经顺铂处理后的凋亡率(AnnexinⅤ/PI法)。 结果 Real-time PCR法检测PTEN mRNA在Hela/DDP中低表达,为Hela的(0.410±0.046)倍(P < 0.01);转染mimic后,Hela中PTEN mRNA表达明显低于NC组及Blank组(P < 0.01),NC组与Blank组比较差异无统计学意义(P > 0.05);转染inhibitor后,Hela/DDP中miR21表达明显高于NC组及Blank组(P < 0.01),NC组与Blank组比较差异无统计学意义(P > 0.05)。AnnexinⅤ/PI检测结果显示,mimic组凋亡率与NC组、Blank组比较明显减少(P < 0.05),inhibitor组凋亡率与NC组、Blank组比较显著提高(P < 0.05)。PI法检测结果显示,mimic组S期所占比例与NC组、Blank组比较明显增加(P < 0.05),NC组与Blank组比较差异无统计学意义(P > 0.05);inhibitor组S期所占比例与NC组、Blank组比较明显减少(P < 0.05),NC组与Blank组比较差异无统计学意义(P > 0.05)。 结论 PTEN mRNA在Hela/DDP中低表达,在Hela中高表达。上调miR21在Hela中的表达能明显降低PTEN mRNA的表达,减少凋亡,增加细胞周期中S期所占比例,导致细胞耐药;下调miR21在Hela/DDP中的表达能明显增加PTEN mRNA的表达,增加凋亡率,降低细胞周期中S期所占比例,从而达到增加化疗敏感性的效果。

[关键词] 宫颈癌细胞;宫颈癌顺铂耐药细胞;miR21;PTEN;顺铂;化疗敏感性

[中图分类号] R737.33 [文献标识码] A [文章编号] 1673-7210(2018)02(c)-0013-06

Study on the mechanism of Cisplatin chemosensitivity in cervical cancer cells based on miR21

YUE Xiaoxue MIAO Jinwei LU Pan

Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China

[Abstract] Objective To detect the mechanism of miR21 gene on the sensitivity of Hela and Cisplatin-resistant Hela/DDP cells to Cisplatin. Methods Mature miR21 mimic and negative control (NC) miRNA were transfected into Hela cells, while miR21 inhibitor and negative control (NC) miRNA were transfected into Hela/DDP cells by riboFECTTM CP. Therefore, Hela cells were divided into mimic group, inhibitor group, NC group and blank group. Real-time PCR was used to measure the expression of PTEN mRNA in each group. The cell cycle was measured through PI method and apoptosis rate of cells after Cisplatin treatment was detected through AnnexinⅤ/PI by fluorescene activated cell sorter. Results Real-time PCR results showed that the expression of PTEN mRNA was an average of (0.410±0.046) fold higher in Hela/DDP than in Hela (P < 0.01). The expression of PTEN mRNA in mimic group was obviously lower than those in NC group and blank group (P < 0.01). The expression of PTEN mRNA in inhibitor group was significantly higher than those in NC group and blank group (P < 0.01). There was no statistical difference between NC group and blank group (P > 0.05) in Hela and Hela/DDP cells. The results of Annexin Ⅴ/PI showed that the apoptosis rate of mimic group was lower than NC group and blank group (P < 0.05), while the inhibitor group showed that the apoptosis rate was more than NC group and blank group (P < 0.05). The of cell proportion of S period in mimic group was higher than those of NC group and blank group (P < 0.05), and there was no significant difference between NC group and blank group (P > 0.05). In the meantime, the cell proportion of S period in inhibitor group was less than those of NC group and blank group (P < 0.05), and there was no significant difference between NC group and blank group (P > 0.05). Conclusion PTEN mRNA is low expressed in Hela/DDP cells and highly expressed in Hela cells. The up-regulated expression of miR21 in Hela can significantly reduce the expression of PTEN mRNA, reduce apoptosis and increase the proportion of S phase in the cell cycle, thereby resulting in Cisplatin resistance. The down-regulated expression of miR21 in Hela/DDP can increase the expression of PTEN mRNA, increase the apoptosis rate and reduce the proportion of S phase in the cell cycle, so as to increase the chemosensitivity of Cisplatin.

[Key words] Hela; Hela/DDP; miR21; PTEN; Cisplatin; Cheosensitivity

宫颈癌在我国女性恶性肿瘤中发病率仅次于乳腺癌,严重威胁妇女健康[1]。化疗是许多恶性肿瘤的主要治疗手段,但在宫颈癌中目前仅作为术前新辅助治疗或晚期复发的姑息性治疗。化疗在宫颈癌应用中受到限制的主要原因是化疗耐药[2]。因此阐明宫颈癌化疗耐药的分子机制,逆转化疗耐药对中晚期宫颈癌患者预后意义重大。微小RNA(microRNAs)的发现为攻克肿瘤化疗难题开启了一条新的途径。microRNAs是一类单链非编码的微小RNA,长度为21~23个核苷酸,通过调控不同的靶点在肿瘤细胞对化疗药物敏感性方面发挥重要作用[3-4]。研究表明,多种肿瘤中都存在着miR21高表达的现象,并且与肿瘤耐药相关[5-6]。本课题组前期研究发现,上调miR21在Hela细胞中的表达能明显降低其对顺铂的敏感性,下调miR21在Hela/DDP细胞中的表达能明显增加其对顺铂的敏感性[7],但其作用机制仍不清楚,故本研究通过对细胞进行瞬时转染外源性改变miR21的表达水平,进一步探索miR21影响宫颈癌细胞顺铂敏感性的分子机制。

1 材料与方法

1.1 材料

人宫颈癌顺铂耐药细胞株Hela/DDP购自北那生物(BNCC 338278),宫颈癌亲本细胞株Hela由军事科学院军事医学研究院生命组学研究所惠赠。顺铂(10 mg/支)购自山东齐鲁制药有限公司(批号:H37021358)。DMEM、胎牛血清(FBS)购自美国Gibco公司,胰蛋白酶购自南京凯基生物科技有限公司,AnnexinⅤ-FITC/PI apoptosis Kit(AP101-60)及Cell Cycle Staining Kit(CCS012)购自联科生物技术有限公司;总RNA提取试剂盒、逆转录试剂盒均购自康为世纪生物公司;miR21mimic、mimic negative control(NC)、inhibitor、inhibitor negative control(NC)及转染试剂riboFECTTM CP(RN:R10034.6)购自锐博生物科技有限公司。

1.2 方法

1.2.1 细胞培养 Hela、Hela/DDP细胞培养于含有10%FBS的DMEM培养基中(5%CO2、37℃),胰酶常规消化、传代。

1.2.2 细胞转染 采用riboFECTTM CP分别转染mimic、inhibitor和阴性对照试剂。mimic组转染50 nmol mimic,inhibitor组转染100 nmol inhibitor,NC组分别转染mimic NC、inhibitor NC,Blank组不做任何转染,转染后培养箱中继续培养。

1.2.3 Real-time PCR检测PTEN mRNA表达 收集转染48 h后的细胞,提取总RNA,将mRNA反转录为cDNA,然后进行PCR扩增。反应体系(20 μL):(2X)SYBR Master mix 10 μL,上下游引物各1 μL;(50X)ROX Reference Dye 0.5 μL;cDNA模板各2 μL,ddH2O 5.5 μL。以GAPDH为内参。PTEN基因引物序列,上游5′-GAGCGTGCAGATAATGACAAGGAAT-3′,下游5′-GGATTTGACGGCTCCTCTACTGTTT-3′。GA?鄄PDH基因引物序列,上游5′-GTCAAGGCTGAGAAC?鄄GGGAA-3′,下游5′-AAATGAGCCCCAGCCTTCTC-3′。PCR反应条件:95℃ 10 min变性;95℃ 10 s,59℃ 60 s(40个循环)富集目标miRNA;95℃,15 s,72℃,15 s,95℃,15 s退火延伸。所有反应均设3个复孔。Ct值(2-ΔΔCt)公式对数据进行相对定量分析。ΔΔCt=(CtPTEN-CtGAPDH)转染组-(CtPTEN-CtGAPDH)对照组。

1.2.4 AnnexinⅤ/PI法检测凋亡 转染后的各组细胞培养24 h后,将终浓度为5 μg/mL顺铂加入Hela细胞中,终浓度为30 μg/mL顺铂加入Hela/DDP细胞中,继续培养48 h后消化细胞,PBS(4℃)洗涤细胞2次;加入500 μL Binding Buffer重悬细胞;每管加入5 μL AnnexinⅤ-FITC、10 μL PI试剂染色,轻柔涡旋混匀后,室温避光孵育5 min;流式细胞仪检测分析。

1.2.5 PI法检测细胞周期 转染后的细胞培养48 h后,加 1 mL DNA Staining solution和10 μL Permeabilization solution,振荡10 s,室温避光孵育30 min,流式细胞仪检测分析。

1.3 统计学方法

应用Graphad Prism 5.0软件进行统计分析,实验数据以均数±标准差(x±s)表示,两组间比较采用t检验,多组间比较采用方差分析,组间两两比较采用LSD-t检验,以P < 0.05为差异有统计学意义。

2 结果

2.1 Hela与Hela/DDP细胞PTEN mRNA的表达

Real-time PCR法检测Hela/DDP与Hela细胞中PTEN的表达,结果显示PTEN mRNA在Hela/DDP與Hela中表达量分别为(0.425±0.040)、(1.040±0.043),前者是后者的(0.410±0.046)倍,差异有高度统计学意义(P < 0.01)(图1)。

2.2 转染mimic或inhibitor后PTEN mRNA表达的变化

2.2.1 Hela细胞转染mimic后PTEN mRNA的表达 Real-time PCR检测Hela细胞转染mimic(50 nm)后PTEN mRNA 表达,结果显示mimic组表达明显减低,表达量为(0.371±0.004),与NC组(1.038±0.002)及Blank组(1.040±0.043)比较差异有高度统计学意义(P < 0.01),NC组及Blank组比较差异无统计学意义(P > 0.05)(图2A)。

2.2.2 Hela/DDP细胞转染inhibitor后PTEN mRNA的表达 Real-time PCR检测Hela/DDP细胞转染inhibitor(100 nm)后PTEN mRNA表达,结果显示inhibitor组表达显著增加,表达量为(1.769±0.063),与NC组(0.353±0.009)及Blank组(0.425±0.040)比较差异有高度统计学意义(P < 0.01),NC组及Blank组比较差异无统计学意义(P > 0.05)(图2B)。

2.3 转染mimic或inhibitor后细胞凋亡率的变化

2.3.1 Hela细胞转染mimic后凋亡率变化 Hela转染mimic、NC 24 h后加5 μg/mL顺铂培养48 h后,AnnexinⅤ/PI法检测细胞凋亡率,结果显示mimic组凋亡率为(19.850±2.150)%,与NC组[(27.250±0.150)%]及Blank组[(31.050±0.939)%]比较明显减少,差异有统计学意义(P < 0.05)(图3A)。

2.3.2 Hela/DDP细胞转染inhibitor后凋亡率变化 Hela/DDP转染inhibitor,NC 24 h后加30 μg/mL顺铂培养48 h后,AnnexinⅤ/PI法检测细胞凋亡率,结果显示inhibitor组凋亡率为(95.200±0.356)%,与NC组[(61.150±0.950)%]及Blank组[(54.700±4.100)%]比较明显升高,差异有统计学意义(P < 0.05)(图3B)。

2.4 转染mimic或inhibitor后细胞周期的变化

2.4.1 Hela细胞转染mimic后周期变化 Hela转染mimic、NC后继续培养48 h,流式检测各组细胞的细胞周期,结果为mimic组S期所占比例为(36.383±1.339)%,与NC组[(24.160±0.490)%]及Blank组[(23.770±0.792)%]比较显著增加,差异有统计学意义(P < 0.05),NC组与Blank组比较差异无统计学意义(P > 0.05)(图4A)。

2.4.2 Hela/DDP细胞转染inhibitor后周期变化 Hela/DDP转染inhibitor、NC后继续培养48 h后,流式检测细胞周期,结果为inhibitor组S期所占比例为(28.410±0.270)%,与NC组[(33.330±2.582)%]及Blank组[(32.883±1.097)%]比较明显减少,差异有统计学意义(P < 0.05),NC组与Blank组比较差异无统计学意义(P > 0.05)(图4B)。

3 讨论

研究表明,miRNA与肿瘤发生发展密切相关[8],其中miR21最受关注。miR21是唯一一个几乎在所有实体肿瘤和非实体肿瘤中均高表达的微小RNA[9-14],如肺癌、乳腺癌、骨肉瘤、宫颈癌、前列腺癌、慢性淋巴细胞白血病、淋巴瘤等,在人类miRNA功能学研究中占有重要地位。Bertino等[15]提出通过分析miRNA的异常表达在改变患者对药物的敏感性中的作用机制进而发现某些可用于指导个性化用药的特殊“miRNA”,即“miRNA的药物基因组学”的想法。基于此,学者们日益关注miR21在肿瘤耐药方面发挥的作用,Chan等[16]发现在卵巢癌顺铂耐药细胞系中,下调miR21的表达可增加顺铂诱导的细胞凋亡,增加细胞对顺铂的敏感性。在膀胱癌T24细胞株中,上调miR21的表达可以诱导多柔比星化疗耐药,下调miR21的表达可以增加T24细胞对多柔比星的敏感性[17]。下调miR21的表达可以增加胶质瘤细胞对依托泊苷的敏感性[16],研究人员同样发现,在非小细胞肺癌中miR21也发挥类似的作用[18]。越来越多的研究结果提示,多种肿瘤化疗耐药与miR21关系密切,然而关于其作用机制的报道目前较少。

miRNA通过下游靶基因介导参与裂解靶基因或抑制翻译,因此通过靶基因预测分析网站如“http://pictar.mdc-berlin.de/”“http://mirdb.org/miRDB/”及“http://www.targetscan.org/”等对miRNA进行靶基因预测[19],可间接判断其在这些过程中扮演的角色。在miRNA众多的靶基因中目前只有少数得到实验验证,包括PTEN、PDCD4、TPMI及TIMP等[10]。荧光素酶报告基因检测系统发现miR21可与PTEN基因的3′UTR结合,进而抑制靶基因表达[8],这为我们进一步研究miR21在宫颈癌耐药中的分子机制提供依据。

结合本课题组前期研究发现[7],PTEN mRNA在Hela/DDP中低表达,而miR21在Hela/DDP细胞中的高表达诱导了宫颈癌的顺铂耐药,这提示PTEN可能与miR21诱导的宫颈癌细胞耐药有关,生物学信息分析软件靶基因预测结果提示PTEN为miR21的靶基因。进一步研究发现Hela细胞转染miR21 mimic后PTEN mRNA表达明显减少,而Hela/DDP细胞转染miR21 inhibitor后PTEN mRNA表達明显增加,更加证明了miR21通过PTEN相关通路影响细胞的药物敏感性。即上调miR21在Hela细胞中的表达可降低PTEN mRNA表达,减少凋亡,增加细胞周期中S期所占比例,导致细胞耐药。下调miR21在Hela/DDP细胞中的表达能增加PTEN mRNA表达,增加凋亡,降低细胞周期中S期所占比例,从而达到化疗增敏的效果。

综上所述,本研究推测miR21在宫颈癌细胞中可能通过调节PTEN相关通路,减少细胞凋亡,将细胞阻滞在S期从而顺铂耐药,这可能有助于增加临床对宫颈癌化疗不敏感的分子机制的了解,研发新的增加宫颈癌化疗敏感性的靶点,但关于miR21对PTEN蛋白表达的影响及其是否仅通过调控PTEN进而影响化疗敏感性尚需进一步研究。

[参考文献]

[1] 杨朝晖,章辉,顾华敏,等.宫颈癌组织中miR-21和Stat3的表达及相关性研究[J].浙江医学,2017,39(2):93-96.

[2] 沈源明.MiR-375参与宫颈癌泰素敏感性调节的机制研究[D].杭州:浙江大学,2012.

[3] Tian L,Zhang J,Ren X,et al. Overexpression of miR-26b decreases thecisplatin-resistance in laryngeal cancer by targeting ATF2 [J]. Oncotarget,2017,8(45):79 023-79 033.

[4] Lu C,Xie Z,Peng Q. MiRNA-107 enhances chemosensitivity to paclitaxel by targeting antiapoptotic factor Bcl-w in non small cell lung cancer [J]. Am J Cancer Res,2017, 7(9):1863-1873.

[5] Au Yeung CL,Co NN,Tsuruga T,et al. Exosomal transfer of stroma-derived miR21 conferspaclitaxel resistance in ovarian cancer cells through targeting APAF1 [J]. Nat Com?鄄mun,2016,7:11150.

[6] Giunti L,da Ros M,Vinci S,et al. Anti-miR21 oligonucleotide enhances chemosensitivity of T98G cell line to doxorubicin by inducing apoptosis [J]. Am J Cancer Res,2014,5(1):231-242.

[7] 岳晓雪,苗劲蔚,路攀.miR21对宫颈癌Hela细胞及顺铂耐药Hela/DDP细胞顺铂敏感性的影响[J].中国医药导报,2017,14(36):25-28.

[8] Du G,Cao D,Meng L. miR-21 inhibitor suppresses cell proliferation and colonyformation through regulating the PTEN/AKT pathway and improves paclitaxel sensitivity in cervical cancer cells [J]. Mol Med Rep,2017,15(5):2713-2719.

[9] Dong Z,Ren L,Lin L,et al. Effectof microRNA-21 on multidrug resistance reversal in A549/DDP human lung cancer cells [J]. Mol Med Rep,2015,11:682-690.

[10] Khella HW,White NM,Faragalla H,et al. Exploring the role of miRNAs in renal cell carcinoma progression and metastasis through bioinformatic and experimental analyses [J]. Tumor Biol,2012,33(1):131-140.

[11] Rui M,Qu Y,Gao T,et al. Simultaneous delivery of anti-miR21 with doxorubicin prodrug by mimetic lipoprotein nanoparticles for synergistic effect against drug resistance in cancer cells [J]. Int J Nanomedicine,2016,12:217-237.

[12] Mohamad M,Wahab NA,Yunus R,et al. Roles of Micro?鄄RNA21 and MicroRNA29a in Regulating Cell Adhesion Related Genes in Bone Metastasis Secondary to Prostate Cancer [J]. Asian Pac J Cancer Prev,2016,17(7):3437-3445.

[13] Pan Y,Meng M,Zhang G,et al. Oncogenic microRNAs in the genesis of leukemia and lymphoma [J]. Curr Pharm Des,2014,20(33):5260-5267.

[14] Zheng Z,Xu PP,Wang L,et al. MiR21 sensitized B-lym?鄄phoma cells to ABT-199 via ICOS/ICOSL-mediated interaction of Treg cells with endothelial cells [J]. Exp Clin Cancer Res,2017,36(1):82.

[15] Bertino JR,Banerjee D,Mishra PJ. Pharmacogenomics of microRNA:amiRSN Ptowards individualized therapy [J]. Pharmacogenomics,2007,8(12):1625-1627.

[16] Chan JK,Blansit K,Kiet T,et al. The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer [J]. Gynecol Oncol,2014,132:739-744.

[17] Tao J,Lu Q,Wu D,et al. microRNA-21 modulatescell pro?鄄liferation and sensitivity to doxorubicinin bladder cancer cells [J]. Oncol Rep,2011,25:1721-1729.

[18] Wang T,Cai Z,Hong G,et al. MicroRNA-21 increases cell viability and suppresses cellular apoptosis in non small cell lung cancer by regulating the PI3K/Akt signaling pathway [J]. Mol Med Rep,2017,16(5):6506-6511.

[19] Wu WS,Tu BW,Chen TT,et al. CSmiRTar:Condition-Specific microRNA targets database [J]. PLoS One,2017, 12(7):e0181231.

(收稿日期:2017-11-25 本文編辑:张瑜杰)