核苷类似物对小鼠肝脏线粒体DNAD—loop区突变的影响


打开文本图片集

[摘要] 目的 探讨长期使用核苷类似物(NA)是否导致肝脏线粒体DNA(mtDNA)D-loop区损伤。 方法 选取7周龄Balb/C小鼠25只,将其随机分为对照组和4个NA实验组。对照组腹腔内注射双蒸水,各实验组分别给予司他夫定(D4T)50 mg/kg、齐多夫定(AZT)100 mg/kg、拉米夫定(3TC)50 mg/kg和去羟肌苷(DDI)50 mg/kg,分别腹腔内注射,每周5次,共12周。取各组小鼠肝组织,通过激光捕获显微切割获取肝细胞,对mtDNA D-loop区克隆和测序。 结果 DDI组肝组织中mtDNA拷贝数(0.440±0.040)和肝细胞中mtDNA拷贝数(0.464±0.013)均较对照组[(1.000±0.080)、(1.000±0.058)]显著减少,差异均有统计学意义(均P < 0.05)。D4T组肝细胞D-loop区与参考序列的平均距离为(0.0037±0.0019),3TC组为(0.0031±0.0017),DDI组为(0.0035±0.0028),与对照组(0.0018±0.0017)比较差异均有统计学意义(均P < 0.05)。D4T组肝细胞D-loop区平均同义替换率(dS)为(0.0060±0.0010),3TC组为(0.0050±0.0007),与对照组(0.0030±0.0007)比较差异有统计学意义(P < 0.05)。DDI组肝细胞D-loop区平均错义替换率(dN)为(0.0020±0.0010),与对照组(0.0008±0.0003)比较差异有统计学意义(P < 0.05)。AZT组肝组织D-loop区的“A→G”转换率(0.001 90)较对照组(0.000 62)高,差异有统计学意义(P < 0.05)。D4T组肝细胞D-loop区的“T→C”转换率为0.001 28,3TC组为0.001 75,较对照组(0.000 58)显著增高,差异均有统计学意义(均P < 0.05)。 结论 长期暴露于核苷类似物可导致小鼠肝细胞mtDNA D-loop区病变,主要突变类型为转换,主要的转换为“A→G”和“T→C”。

[关键词] D-loop区;线粒体DNA;肝细胞;核苷类似物

[中图分类号] R978.7;R512.6 [文献标识码] A [文章编号] 1673-7210(2016)05(c)-0009-04

[Abstract] Objective To identify whether long term use of nucleoside analogue (NA) can induce liver mitochondrial DNA (mtDNA) D-loop lesions. Methods Twenty five 7-weeks Balb/c mice were selected and randomly divided into control group and 4 NA experimental groups. The control group was given double-distilled water by intraperitoneal injection, each experimental group was respectively given Stavudine (D4T) 50 mg/kg, Zidovudine (AZT) 100 mg/kg, Lamivudine (3TC) 50 mg/kg, Didanosine (DDI) 50 mg/kg by intraperitoneal injection, 5 times per week, total for 12 weeks. Then, the hepatic tissues of all groups were taken, and the hepatic cells were captured by laser capture microdissection. The mtDNA D-loop region was taken cloning and sequencing. Results The mtDNA copy number in both liver tissues (0.440±0.040) and hepatic cells (0.464±0.013) of DDI group was less than those of control group [(1.000±0.080), (1.000±0.058)], the differences were all statistically significant (all P < 0.05). The mean distances between D-loop mutation in hepatic cells and reference sequence were (0.0037±0.0019) in the D4T group, (0.0031±0.0017) in the 3TC group, (0.0035±0.0028) in the DDI group, all of which had statistically significant differences compared with that in the control group (0.0018±0.0017) (all P < 0.05). The mean synonymous substitution rate (dS) of D-loop region in hepatic cells of D4T group was (0.0060±0.0010), which of 3TC group was (0.0050±0.0007), both of which had statistically significant differences compared with that in the control group (0.0030±0.0007) (P < 0.05). The mean non-synonymous substitution rate (dN) of D-loop region in hepatic cells of DDI group was (0.0020±0.0010), which had statistically significant difference compared with that in the control group (0.0008±0.0003) (P < 0.05). The rate of “A→G” transition of D-loop region in the hepatic tissues of AZT group was (0.001 90), which were higher than that of control group (0.000 62) (P < 0.05). The rate of “T→C” transition of D-loop region in the hepatic cells was 0.001 28 in the D4T group and 0.001 75 in the 3TC group, which was higher than that of control group (0.000 58), the differences were all statistically significant (all P < 0.05). Conclusion Long-term exposure to nucleoside analogue can result in the lesions of mtDNA D-loop region in hepatic cells of mice, the major mutation type is transition, and the major transition subtypes are “A→G” and “T→C”.

[Key words] D-loop region; Mitochondrial DNA; Hepatic cells; Nucleoside analogue

核苷类似物(NA)用于治疗人类免疫缺陷病毒(HIV)和乙型肝炎病毒(HBV)感染[1]。NA可抑制人细胞DNA聚合酶γ,干扰核DNA修复及线粒体DNA的合成和修复,导致氧化应激和线粒体功能障碍[2],与临床许多疾病相关,包括肌病、脂肪萎缩、神经系统疾病和乳酸酸中毒[3]。这些可能是降低抗HIV药效和患者依从性的关键因素[4]。长期应用NA的HIV感染者可发生肝脂肪变性,但NA的肝毒性原因尚不明确。笔者前期研究提示,应用NA的小鼠和HIV感染患者存在神经细胞线粒体毒性[5-6]。本研究通过观察肝组织和肝细胞的线粒体DNA(mtDNA)D-loop区序列变化,明确NA是否会诱导小鼠肝细胞mtDNA病变。

1 材料与方法

1.1 实验动物

7周龄、体重28~30 g的Balb/C雌性小鼠25只(军事医学科学院),按照首都医科大学动物保护和使用规定进行动物实验。

1.2 分组及给药

将小鼠随机分为4个实验组[司他夫定(D4T)组、齐多夫定(AZT)组、拉米夫定(3TC)组、去羟肌苷(DDI)组]和对照组。各实验组小鼠每天分别给予腹腔内注射D4T 50 mg/kg、AZT 100 mg/kg、3TC 50 mg/kg、DDI 50 mg/kg(东北制药集团有限责任公司惠赠),每周5 d,连续12周。对照组腹腔内注射双蒸水。

1.3 实验取材

12周结束时,颈椎脱臼处死小鼠,迅速分离小鼠肝组织于液氮中速冻。最佳切片温度复合物包埋肝组织,-20℃将组织切为6 μm薄片,置于聚乙烯包被的玻片上。行HE染色。晾干5 min,2 h内由有经验的病理医师应用P.A.L.MRobot-Microbeam系统(Oberkochen,德国)对切片行激光捕获显微切割(LCM)获取肝细胞[7]。

1.4 DNA提取和实时定量PCR

据DNA提取试剂盒(QIAGEN中国有限公司)说明书提取肝组织和肝细胞DNA。TaqMan 7900HT系统行定量PCR。细胞色素氧化酶亚基Ⅱ(COXⅡ)作为mtDNA的靶基因,核基因甘油醛-3-磷酸脱氢酶(GAPDH)作为内参。CoxⅡ正向引物:5"-CGACCTAAAACCTGGTGAACTA-3",反向引物:5"-TTGGAAGTTCTATTGGCAGAAC-3",探针:5"-FAM-ACTGCTAGAAGTTGATAACCGAGTC-TAMRA-3"[5]。引物和探针由Invitrogen公司合成。每个样本重复3次qPCR反应。双蒸水作为阴性对照。2-ΔΔCt方法即ΔΔCt=(CtCOXⅡ-CtGAPDH)测试组-(CtCOXⅡ-CtGAPDH)对照组分析数据。

1.5 mtDNA D-loop区的克隆和测序

PCR扩增肝组织和肝细胞DNA的mtDNA区。每个反应用10 ng基因组DNA作为模板。mtDNA D-loop区PCR引物对:F1:5"-CTAATACCTTTCCTTCATACCTCAA-3";R1:5"-ATTTTGGGAACTACTAGAATTGATC-3";F2:5"-CAACCAGTAGAACACCCATTTATTA-3";R2:5"-TGTCTTTCAAGTTCTTAGTGTTTTT-3"。双蒸水为阴性对照。PCR产物克隆于pGEM-18T载体。ABI 3730基因分析仪器对每个样本随机选择的10个克隆测序。

1.6 序列分析

Vector NTI套件7.0 Contig Express软件包对每个克隆的核苷酸序列组装并纠错[8]。Clustal W多序列比对程序比对序列与参考序列(NC_005089.1,GenBank)。Mega 5.0 Kimura双参数模型计算每组序列的序列多样性,包括平均核苷酸距离、同义替换率(dS)、错义替换率(dN)。运用Tamura3参数模型计算平均核苷酸距离、dS和dN。

1.7 统计学方法

应用SPSS 18.0统计软件。采用Mann-Whitney非参数检验比较组间mtDNA拷贝数差异,采用χ2检验或Fisher精确检验比较组间dS和dN差异。以P < 0.05为差异有统计学意义。

2 结果

2.1 各组肝组织和肝细胞mtDNA拷贝数比较

肝组织mtDNA拷贝数:AZT组为(0.660±0.040),D4T组为(0.560±0.070),3TC组为(0.670±0.020),DDI组为(0.440±0.040),其中DDI组小鼠肝组织mtDNA拷贝数较对照组(1.000±0.080)明显减少,差异有统计学意义(P < 0.05)(图1A)。肝细胞mtDNA拷贝数:AZT组为(0.666±0.024),D4T组为(0.634±0.024),3TC组为(0.708±0.031),DDI组为(0.464±0.013),其中DDI组小鼠细胞mtDNA拷贝数较对照组(1.000±0.058)明显减少,差异有统计学意义(P < 0.05)(图1B)。

2.2 各组肝组织和肝细胞mtDNA D-loop区序列变化比较

肝组织D-loop区与参考序列的平均距离:AZT组为(0.0026±0.0014),D4T组为(0.0018±0.0015),3TC组为(0.0015±0.0013),DDI组为(0.0016±0.0008)。各实验组与对照组(0.0021±0.0020)比较差异无统计学意义(P > 0.05)(图2A)。肝细胞D-loop区与参考序列的平均距离:AZT组为(0.0015±0.0022),D4T组为(0.0037±0.0019),3TC组为(0.0031±0.0017),DDI组为(0.0035±0.0028)。除AZT组外,余各实验组与对照组(0.0018±0.0017)比较差异均有统计学意义(P < 0.05)(图2B)。

肝组织D-loop区平均dS:对照组为(0.0030±0.0012),AZT组为(0.0038±0.0008),D4T组为(0.0024±0.0005),3TC组为(0.0022±0.0008),DDI组为(0.0026±0.0005),各组肝组织dS与对照组比较,差异无统计学意义(P > 0.05)(图2C)。肝细胞D-loop区平均dS对照组为(0.0030±0.0007),AZT组为(0.0030±0.0010),D4T组为(0.0060±0.0010),3TC组为(0.0050±0.0007),DDI组为(0.0038±0.0016)。D4T组和3TC组与对照组比较,差异有统计学意义(P < 0.05)(图2D)。

肝组织D-loop区平均dN:对照组为(0.0010±0.0007),AZT组为(0.0014±0.0009),D4T组为(0.0006±0.0003),3TC组为(0.0006±0.0002),DDI组为(0.0006±0.0004)。各组肝组织dN与对照组比较,差异无统计学意义(P > 0.05)(图2E)。肝细胞D-loop区平均dN:对照组为(0.0008±0.0003),AZT组为(0.0006±0.0005),D4T组为(0.0006±0.0005),3TC组为(0.0010±0.0007),DDI组为(0.0020±0.0010)。仅DDI组存在相对高的dN值,与对照组比较,差异有统计学意义(P < 0.05)(图2F)。

2.3 各组肝组织和肝细胞mtDNA D-loop基因突变

肝组织D-loop区序列单碱基的转换率:AZT组为0.0023,D4T组为0.0017,3TC组为0.0004,DDI组为0.0008,各实验组与对照组(0.0017)比较,差异无统计学意义(P > 0.05)(图3A)。“A→G”转换率:AZT组为0.001 90,D4T组为0.000 93,3TC组为0.000 00,DDI组为0.000 28,AZT组较对照组(0.000 62)显著升高,差异有统计学意义(P < 0.05)(图3B)。肝细胞D-loop区序列单碱基的转换率:AZT组为0.0015,D4T组为0.0027,3TC组为0.0022,DDI组为0.0021,D4T组较对照组(0.0016)明显升高,差异有统计学意义(P < 0.05)(图3C)。“T→C”转换率:AZT组为0.000 64,D4T组为0.001 28,3TC组为0.001 75,DDI组为0.000 58,D4T组和3TC组较对照组(0.000 48)显著增高,差异有统计学意义(P < 0.05)(图3D)。

3 讨论

研究表明,约20%的接受抗逆转录病毒治疗的患者出现肝损伤[9];12%接受干扰素+利巴韦林联合抗逆转录病毒治疗的HIV/HCV混合感染患者,表现出无症状的线粒体毒性[10]。抗逆转录病毒药物的肝毒性可能会促进HIV/HCV混合感染患者的肝纤维化。此外,抗病毒治疗相关的免疫重建可能会减轻患者HCV相关的肝脏损害[11]。NA能否对肝脏产生线粒体毒性尚不清楚。

NA可通过与自然脱氧核苷三磷酸竞争,抑制核或mtDNA多聚酶和DNA复制的链终止[12]。最近研究表明,非NA逆转录酶抑制剂导致的肝毒性涉及内质网(ER)应激/未折叠蛋白,通过线粒体相关的ER膜(MAMs)介导的Ca2+交换和能量代谢障碍[13]。本研究提示小鼠暴露于NA 3个月后肝细胞存在线粒体毒性。mtDNA D-loop区位于线粒体基因组非编码区,具有许多重要的转录和复制元素,极易发生突变[14]。D-loop区突变可能先于肿瘤发生,并可能在肿瘤发生过程中累积[15]。mtDNA D-loop区与年龄、物种进化和各种退行性疾病相关[16]。本研究通过分析各NA组肝组织和肝细胞D-loop区的突变,提示NA,特别是D4T和DDI,能够导致小鼠肝细胞mtDNA D-loop区序列多样性和点突变的发生,NA诱导的小鼠肝细胞D-loop区最常见的碱基突变类型为转换。

综上所述,长期暴露于NA可导致小鼠肝细胞mtDNA D-loop区突变,主要突变类型为转换,主要为“A→G”和“T→C”,部分揭示了长期应用NA出现肝脏病变的原因。

[参考文献]

[1] Seto WK,Liu K,Wong DK,et al. Patterns of hepatitis B surface antigen decline and HBV DNA suppression in Asian treatment-experienced chronic hepatitis B patients after three years of tenofovir treatment [J]. J Hepatol,2013,59(4):709-716.

[2] Dragovic G,Jevtovic D. The role of nucleoside reverse transcriptase inhibitors usage in the incidence of hyperlactatemia and lactic acidosis in HIV/AIDS patients [J]. Bio Pharm,2012,66(4):308-311.

[3] Dagan T,Sable C,Bray J. Mitochondrial dysfunction and antiretroviral nucleoside analog toxicities:what is the evidence? [J]. Mitochondrion,2002,1(5):397-412.

[4] Lapinski TW,Parfieniuk-Kowerda A,Trzos A,et al. HBV mutations associated with lamivudine therapy [J]. Przegl Epidemiol,2013,67(4):611-616,705-708.

[5] Zhang Y,Song F,Gao Z,et al. Long-term exposure of mice to nucleoside analogues disrupts mitochondrial DNA maintenance in cortical neurons [J]. PLoS One,2014,9(1):e85637.

[6] Zhang Y,Wang M,Li H,et al. Accumulation of nuclear and mitochondrial DNA damage in the frontal cortex cells of patients with HIV-associated neurocognitive disorders [J]. Brain Res,2012,1458(6):1-11.

[7] Rook MS,Delach SM,Deyneko G,et al. Whole genome amplification of DNA from laser capture-microdissected tissue for high-throughput single nucleotide polymorphism and short tandem repeat genotyping [J]. Am J Pathol,2004,164(1):23-33.

[8] Liu F,Yu DM,Huang SY,et al. Clinical implications of evolutionary patterns of homologous,full-length hepatitis B virus quasispecies in different hosts after perinatal infection [J]. J Clin Microbiol,2014,52(5):1556-1565.

[9] Antoniades C,Macdonald C,Knisely A,et al. Mitochondrial toxicity associated with HAART following liver transplantation in an HIV-infected recipient [J]. Liver Transpl,2004,10(3):699-702.

[10] Laguno M,Milinkovic A,de Lazzari E,et al. Incidence and risk factors for mitochondrial toxicity in treated HIV/HCV-coinfected patients [J]. Antivir Ther,2005,10(3):423-429.

[11] Macias J,Castellano V,Merchante N,et al. Effect of antiretroviral drugs on liver fibrosis in HIV-infected patients with chronic hepatitis C:harmful impact of nevirapine [J]. AIDS,2004,18(5):767-774.

[12] Wester CW,Eden SK,Shepherd BE,et al. Risk factors for symptomatic hyperlactatemia and lactic acidosis among combination antiretroviral therapy-treated adults in Botswana:results from a clinical trial [J]. AIDS Res Hum Retroviruses,2012,28(8):759-765.

[13] Apostolova N,Gomez-Sucerquia LJ,Alegre F,et al. ER stress in human hepatic cells treated with Efavirenz:mitochondria again [J]. J Hepatol,2013,59(4):780-789.

[14] Chang SC,Lin PC,Yang SH,et al. Mitochondrial D-loop mutation is a common event in colorectal cancers with p53 mutations [J]. Int J Colorectal Dis,2009,24(6):623-628.

[15] Alhomidi MA,Vedicherla B,Movva S,et al. Mitochondrial D310 instability in Asian Indian breast cancer patients [J]. Tumour Biol,2013,34(4):2427-2432.

[16] Abdullaev SA,Anishchenko ES,Gaziev AI. Mutant copies of mitochondrial DNA in tissues and plasma of X-rays exposed mice [J]. Radiats Biol Radioecol,2010,50(3):318-328.

(收稿日期:2016-02-03 本文编辑:张瑜杰)